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Abstract
A new class of variational wave functions describing many-body systems with
spin-dependent correlations is used to study solid 3He. The idea of spin coherent
states is used to construct a variational coherent-state wave function for solid
3He as an antisymmetrized Jastrow–Nosanow wave function that also contains
spin-dependent correlations. We investigate this wave function by a variational
Monte Carlo method. The addition of triplet (three-body) correlations produces
a ground-state energy per particle that is a considerable improvement upon
other variational results, but still appreciable discrepancies with the experiment
remain. We speculate that such discrepancies point to a non-negligible effect
of more-than-three-body correlations for both liquid and solid 3He.

1. Introduction

The physics of 3He and 4He has always been a subject of great interest in quantum statistical
mechanics and many-body theory. Helium atoms, as components of liquid or solid helium,
can be considered as structureless, spherical particles interacting via a two-body potential.
The attractive part of the potential causes helium gas to condense into a liquid phase (at a
temperature T0 = 3.2 K for 3He and 4.2 K for 4He, at normal pressure). In addition, on
decreasing temperature below T0, neither 3He nor 4He solidifies unless pressure is applied.
This is a genuine quantum effect caused in part by the strong zero-point motion arising from
the small atomic mass and in part by the weakness of the attractive part of the interaction,
due to the high symmetry of the atoms. Moreover, quantum effects are responsible for the
strikingly different behaviour of the Fermi 3He and the Bose 4He systems, which emphasizes
the role played by the exchange symmetry for such low-temperature quantum fluids.

A transition to the crystalline state can only occur at higher pressure. At low temperature
the systems undergo phase transitions to superfluid phases of different origins. The Bose 4He
undergoes a Bose–Einstein condensation in the liquid phase at the λ-temperature (2.17 K at
normal pressure), while for 3He, which is a Fermi liquid, the transition occurs at a much lower
temperature (some mK) due to a mechanism of pairing that can be described by BCS theory.
The phase diagram of 3He is richer and more complicated than that of 4He.
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Realistic pair potentials have been extracted from experiments and simulation data to
represent the interaction between helium atoms in the condensed systems, from the Lennard-
Jones (LJ) potential adopted in early studies to the more accurate HFDHE2 potential developed
and refined by Aziz et al [1].

The HFDHE2 potential has become the potential of choice for helium studies and its
wide acceptance has been due in part to Green’s function Monte Carlo (GFMC) results [2, 3]
that have shown a good agreement with the low-temperature experimental equation of state
for 4He. Small inconsistencies with theoretical results and experimental data have been
detected and this has prompted revisions of the HFDHE2 potential, with much of the work
done by the Aziz group itself [4]. These recent minor revisions have improved the quality
of but not greatly altered the description of the interaction between helium atoms at low
temperature. In this work we will continue to use the HFDHE2 potential to facilitate
comparison with existing calculations in the literature and because the GFMC work has
shown that the HFDHE2 potential provides an accurate description of the interaction of
helium atoms.

For 3He the situation is less satisfactory, because the quantum Monte Carlo (QMC) results
are not as accurate as for 4He. Difficulties associated with the antisymmetric nature of Fermi
wave functions are well known and the Fermi sign problem manifests itself as an exponential
increase in statistical error as the calculation proceeds. GFMC simulations for liquid 3He
have been performed in the fixed-node approximation [5] (employing nodes from accurate
variational wave functions); these give an upper bound for the exact energies.

While for solid 4He an unsymmetrized Jastrow–Nosanow (JN) wave function works
reasonably well, it is less satisfactory for solid 3He, as first shown by the variational Monte
Carlo (VMC) calculations of Hansen and Levesque [6]. In these calculations, the crystalline
order of the solid phases is imposed through one-body Gaussian terms that explicitly localize
the particles in the vicinity of the lattice sites of a perfect lattice. However, it is important
to mention that the one-body Gaussian terms of the unsymmetrized JN wave function violate
both the translational symmetry of the Hamiltonian and the statistics (Bose/Fermi) of the
wave function.

Several other calculations for solid 3He have been performed with an antisymmetrized
version of the JN wave function [7], obtained by replacing the unsymmetrized simple product
of localized Gaussian orbitals [8] with a determinant of the same orbitals. Although this wave
function has the correct symmetry and statistics, the energy per particle is always higher in
this approach than in the unsymmetrized case.

Solid 3He is very interesting also in view of its magnetic properties [9]; it is experimentally
well known that below a certain temperature of the order of mK, a nuclear-spin ordering of
the up–up–down–down (u2d2) form becomes stable—that is, there is a stacking of two planes
of the body-centred-cubic (bcc) crystal with ‘up’ spins, followed by two planes with ‘down’
spins. Just as in electronic systems where the underlying interaction is independent of spin,
the magnetic effects in solid 3He are produced by the Pauli principle and exchange interaction.
Even though the Hamiltonian of the system is considered independent of spin, including spin-
exchange terms in the wave function may allow one to describe the physical correlations in a
simpler way than by just using spatial correlations.

A wave function without spin-dependent correlations can be easily written as the cor-
relation factor times two determinants of spatial orbitals: one for ‘up’ spins and one for
‘down’ spins. The reason for this simplification is that neither the correlation operator nor
the Hamiltonian can flip the spins. The introduction of spin-dependent correlations makes
this simple analysis fail, since now the spin correlations introduce spin exchanges which flip
the spins of particles. The inclusion of spin-correlation operators into the wave function
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severely restricts the system size and it is difficult to construct a low-variance method for
performing such calculations.

Until recently, this has remained a long-standing problem in many areas of physics,
including that of quantum liquids and nuclear physics. This difficulty seems to be overcome
by a different new approach for dealing with spin-dependent correlations in variational
calculations [10]. In this approach, the wave function is constructed using spin coherent states
to represent the quantum spin states of particles, which are then parametrized by a continuous
variable that looks like a classical spin vector, and, in particular, spin operators can now be
represented as simple integrals over these classical spin variables. Thus, correlation operators
that had previously proven cumbersome in variational calculations can be replaced by integrals
over c-valued functions. With this in mind, Lawson et al [10] have presented a coherent-state
wave function (CSWF) for liquid 3He and have performed explicit VMC calculations showing
that the CSWF for liquid 3He gives very good results at the level of the best wave functions
which include either spin and/or backflow correlations.

It is the intent of this paper to extend the spin-coherent-state formalism to solid 3He and
present new results obtained by a VMC calculation.

Variational calculations yielding a good ground-state trial function are an essential pre-
liminary to a reliable GFMC calculation, because improved trial wave functions significantly
reduce the statistical error by initiating the iterative calculation nearer to the ground state. A
good trial wave function is especially crucial to a successful attack on the fermion problem
for solid 3He where not many results are available, and we believe that a CSWF for solid 3He
has all the physical ingredients to be a very good starting trial wave function.

The CSWF for solid 3He is constructed as an antisymmetrized JN wave function that
incorporates spin correlations among the 3He particles, and in addition we add triplet (three-
body) correlations to bring the equilibrium density and energy closer to the experimental
values.

2. The coherent-state wave function for solid 3He

In the coherent-state formulation, the spin coherent states are a family of spin states created
by applying the rotation operator R̂(θ, φ) to the maximally spin-polarized state |S, S〉:

|�〉 = R̂(θ, φ)|S, S〉 = eiφŜzeiθŜy |S, S〉 (1)

where |�〉 is a unit vector on the sphere specified by polar and azimuthal angles 0 � θ � π ,
0 � φ < 2π and the state |S, S〉 is the eigenstate of Ŝz with the largest possible eigenvalue.
With this definition, there is a one-to-one correspondence between the coherent states and
points on the unit sphere except for the case of the south pole.

For spin σ = 1/2 particles which is the case that we will consider here, the expansion is
especially simple:

|�〉 = ω↑(�)|↑〉 + ω↓(�)|↓〉 (2)

where the coefficients are given by

ω↑(�) = 〈↑|�〉 = cos

(
θ

2
h̄

)
exp

(
i

2
φh̄

)
(3)

and

ω↓(�) = 〈↓|�〉 = sin

(
θ

2
h̄

)
exp

(
− i

2
φh̄

)
. (4)
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In the coherent spin representation any spin operator Ô can be represented in a form that looks
like a diagonal operator:

Ô =
∫

d 	�
2π

|�〉f (�)〈�| (5)

where f (�) is, in general, a non-unique, c-valued function of the angles (θ, φ) and d 	� =
dθ sin(θ) dφ is an element of solid angle. In general, if the operator Ô is linear in the quantum
spin h̄	σ , then the corresponding f (�) is also linear in 	�; for example, 	σi · 	σj goes over to
	�i · 	�j .

We describe solid 3He by an antisymmetrized JN wave function that contains explicitly
the spin-dependent correlations through the coherent spin representation and is written as

|�〉 =
∫

d 	�(N) |�(N)〉 exp

[
N∑
i<j

u(|	ri − 	rj |)
]

exp

[
N∑
i<j

uσ (|	ri − 	rj |) 	�i · 	�j

]
〈�(N)|�〉

(6)

where |�〉 = Det{ϕ	sj (	ri)} is the antisymmetrized determinant of Gaussian orbitals localized
around the sites of a solid lattice. The two-body Jastrow correlation pseudopotential, u(r), is
taken to be of McMillan form [11]:

u(r) = −1

2

(
b

r

)5

(7)

where b is chosen variationally.
We use a shorthand notation where |�(N)〉 represents the many-spin state |�1 · · ·�N 〉,

d 	�(N) is the whole set of variables d 	�1 · · · d 	�N and 〈�(N)|�〉 is the modified determinant
of Gaussian orbitals within the coherent spin representation. For each spin-σ = 1/2 particle,
the spin state is specified as being ‘up’ |↑〉 or ‘down’ |↓〉 and the full overlap 〈�(N)|�〉 is
expressed as a determinant of modified single-particle orbitals of the form

〈�(N)|�〉 = Det(Mij ) (8)

where Mij = ϕ	sj (	ri)〈�i |σj 〉 and

σj =
{

↑ j = 1, . . . , N/2

↓ j = N/2 + 1, . . . , N .
(9)

The single-particle states ϕ	sj (	ri) where particle i occupies the j th solid lattice site 	sj are taken
as Gaussian orbitals, ϕ	sj (	ri) = exp[−C(	ri − 	sj )2], where the localization strength C is a
parameter to be optimized variationally. The spin-dependent pseudopotential has been taken
to be of the backflow form [10] and is written as

uσ (r) = −λ exp

[
−

(
r − r0

w

)2
] (

L/2 − r

L/2

)3

(10)

where L is the size of the cubic simulation box and N is the number of particles used in
the simulation. At the two-body level, spin-singlet pairs and spin-triplet pairs are correlated
differently using the CSWF. The effect can be similar to backflow, which correlates states
with different wave vectors differently. Recent calculations have shown that spin correlations
can give results quantitatively similar to backflow [12]. The fact that the energy per particle
obtained from the CSWF for liquid 3He agrees very well when compared to the Jastrow–Slater
(JS) wave function with backflow correlations (JSB) indicates that the CSWF provides a good
representation of the true spin correlations.
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The inclusion of the triplet correlations in the CSWF follows the same formalism as was
given by Schmidt et al [13], where we use a modified Jastrow pseudopotential instead of the
original one:

ũ(r) = u(r) +
λT

2
ξ 2(r)r2 (11)

and we then multiply the CSWF of equation (6) for the modified Jastrow pseudopotential by
a term of the form

exp

[
−λT

4

N∑
l=1

	G(	rl) · 	G(	rl)
]

where

	G(	rl) =
N∑
j �=l

ξ(|	rl − 	rj |)(	rl − 	rj ). (12)

The parametrization of ξ(r) is done as follows:

ξ(r) = exp

[
−

(
r − r0

T

wT

)2
] (

r − RT

RT

)3

(13)

where in total there are three new variational parameters that describe the triplet correlations:
the strength λT , the peak position r0

T and the width wT of the Gaussian factor of the triplet
function. The cut-off RT should be chosen equal to L/3 in order to avoid counting different
images of the same triplet, but as ξ(r) is very short ranged and is almost zero at L/3, even
larger cut-off values, as reported in literature, can be used without trouble.

3. Results and discussion

As an explicit test of this wave function, we present the results of a VMC calculation for bcc
solid 3He. This is an appropriate test system because it has been the subject of extensive
numerical investigation [14] and, in addition, there is strong evidence that spin-dependent
correlations can play a major role in determining its ground-state properties. We computed the
energy per particle of bcc solid 3He at several densities by considering the standard Hamiltonian

Ĥ = − h̄2

2m

N∑
i=1

∇2
i +

N∑
i<j

v(|	ri − 	rj |) (14)

where v(r) is the two-body HFDHE2 Aziz potential. The choice of this potential is due to its
wide and successful application both to the liquid phase and to the solid phase of 4He. It is
believed, although we are not aware of any proof, that the potential between 3He atoms should
be almost the same as that for 4He atoms.

We performed VMC simulations at several densities of bcc solid 3He for N = 16 and
N = 54 particles. Finite-size effects on the binding energy per particle have been estimated
at the equilibrium density and have been found to be of about 0.15 K. Unlike the simulations
for liquid 3He [10], those for solid 3He were statistically stable for N = 54 particles as well.
The simulations were performed using the Metropolis algorithm [15]. Initial coordinates are
chosen for each particle; typically they are either on a lattice or are a result of a previous Monte
Carlo run. The particles are then moved one by one to new trial positions. For a simulation
with N particles, the size of the cubic simulation box was taken as L = (N/ρ)1/3, compatible
with the density ρ, and periodic boundary conditions were always considered.
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We started the simulation from an initial configuration of bcc type with either anti-
ferromagnetic (AF) or u2d2 nuclear-spin ordering, and optimized the variational parameters of
the CSWF. For N = 16 particles the optimal value for the Jastrow pseudopotential parameter
was b = 2.84 Å; for the spin–spin pseudopotential parameters the optimal values wereλ = −5,
r0 = 2.4 Å, w = 1.3 Å and for the Gaussian orbital C = 0.40 Å−2.

When we extended the simulation to N = 54 particles we had to reoptimize these
variational parameters; however, we always found the same energy per particle (within the
statistical error) whether we had AF or u2d2 spin ordering. This is to be expected since the
difference in energy amongst different spin configurations does not exceeds a few mK per
particle. The CSWF for bcc solid 3He allows us to incorporate spin correlations into the wave
function and has the advantage of not freezing the spin structure, so the problems encountered
with the Shadow–Slater-backflow (ShSB) wave function by Pederiva et al [16] when exchange
moves of particles with different spin assignments were turned on were not observed.

In principle, analogous problems would arise whenever a frozen spin structure was used,
so the main advantage of using the CSWF is the possibility that it affords for allowing spins
to arrange their structure.

In table 1 we report the energy per particle for bcc solid 3He at several densities obtained
from a VMC simulation with N = 54 particles using the CSWF. The inclusion of the triplet
correlations into the trial variational many-body wave function was done by modifying the
Jastrow pseudopotential and adding the triplet term as previously explained.

Table 1. Total energy per particle at several densities corresponding to bcc solid 3He obtained from
a VMC simulation with N = 54 particles using the coherent-state wave function (CSWF) and the
CSWF with triplet correlations (CSWF + T).

N ρ (Å−3) Potential Wave function E/kB (K)

54 0.025 091 HFDHE2 CSWF 0.98 ± 0.03
54 0.025 091 HFDHE2 CSWF + T 0.42 ± 0.04
54 0.026 349 HFDHE2 CSWF 1.54 ± 0.03
54 0.026 349 HFDHE2 CSWF + T 0.91 ± 0.04
54 0.027 373 HFDHE2 CSWF 2.55 ± 0.03
54 0.027 373 HFDHE2 CSWF + T 1.67 ± 0.04

To find the optimal variational parameters for Jastrow and triplet correlations we used
the Euler Monte Carlo (EMC) method of Moroni et al [17], which combines the reweighting
method for variance minimization with a technique which makes use of the derivatives of the
local energy with respect to the expansion parameters. In table 1 we also show the energy per
particle obtained when we added the triplet correlations into the wave function (CSWF + T)
for the same densities. As can be seen from the results in table 1, the triplet correlations play
an important role for solid 3He, lowering the energy per particle by more than 0.5–0.6 K.

In table 2 we show the energy per particle for bcc solid 3He at density ρ = 0.026 349 Å−3

obtained from a VMC simulation with N = 54 particles using firstly the CSWF and secondly
the CSWF + T wave function (with added triplet correlations). We compare our results with
the respective results of Pederiva et al [16], who used a ShSB wave function that also contains
triplet correlations.

Finally, in table 3 we show the optimal values of the variational parameters of the CSWF
with and without triplet correlations used in our VMC simulation of bcc solid 3He withN = 54
particles. Setting to zero the triplet correlations, we recalculated the energy corresponding
to the CSWF. As the backflow + triplet correlations were optimized together, the Jastrow
correlations may still need reoptimization once we turn off the triplet correlations, although
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Table 2. Total energy per particle at density ρ = 0.026 349 Å−3 (ρσ 3 = 0.440, σ = 2.556 Å) for
bcc solid 3He. All of the VMC results are obtained from a simulation with N = 54 particles using
the coherent-state wave function (CSWF) and the CSWF with triplet correlations (CSWF + T).
We compare our results with the results of Pederiva et al [16] using the Shadow–Slater-backflow
(ShSB) wave function when the initial configuration of spins has a normal antiferromagnetic
order (ShSB–NAF) and when an exchange of particles with different spin assignments is tried
(ShSB + exchange). In all cases we use the HFDHE2 potential.

N ρ (Å−3) Potential Wave function E/kB (K)

54 0.026 349 HFDHE2 CSWF 1.54 ± 0.03
54 0.026 349 HFDHE2 CSWF + T 0.91 ± 0.04
54 0.026 349 HFDHE2 ShSB–NAF 1.382 ± 0.023
54 0.026 349 HFDHE2 ShSB + exchange 2.405 ± 0.042

Table 3. The variational parameters of the CSWF and CSWF + T used in the simulation of bcc
solid 3He with N = 54 particles.

N Wave function b (Å) λ r0 (Å) w (Å) c (Å−2) λT (Å−2) r0
T (Å) wT (Å)

54 CSWF 2.86 −2.1 1.8 1.3 0.35 — — —
54 CSWF + T 2.86 −2.1 1.8 1.3 0.35 −3.22 1.758 1.61

even when we do not do this, we clearly see a strong triplet contribution on lowering the energy
per particle.

In figure 1 we show two different spin-dependent pseudopotentials uσ (r) that we use to
see the influence of different spin pseudopotentials on the spin-resolved radial distribution
functions. The first one (solid line) is chosen to have its peak at an interparticle distance
less than 2 Å where the chance of finding two particles is very small because of the hard-
core repulsion of the HFDHE2 pair potential, while the second (dashed line) is peaked at
an interparticle distance of about 3 Å. For these two different spin–spin pseudopotentials we
computed the spin-resolved radial distribution functions, g↑↑(r) and g↑↓(r), and the total
radial distribution function, g(r) = g↑↑(r) + g↑↓(r), at several densities. The spin-parallel

Figure 1. Two different spin–spin pseudopotentials uσ (r) used in a VMC simulation with N = 16
particles to test the influence of different forms of spin-correlation pseudopotentials on the spin-
resolved radial distribution function for bcc solid 3He at density ρ = 0.025 091 Å−3.
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and spin-antiparallel radial distribution functions g↑↑(r) and g↑↓(r) are plotted in figure 2 for
bcc solid 3He at the density ρ = 0.025 091 Å−3. We see that at distances where the spin-
dependent correlation pseudopotential is more effective (dashed line), both spin orderings,
(↑↑) and (↑↓), are affected and the tendency is to increase the spin-parallel radial distribution
function g↑↑(r), by simultaneously decreasing the spin-antiparallel radial distribution function
g↑↓(r). The overall equation of state of liquid and solid 3He is shown in figure 3. For the sake
of completeness we have also included some results for liquid 3He, although our main interest
was the study of bcc solid 3He. We show the energy per particle for bcc solid 3He for several
densities obtained from a VMC simulation with N = 54 particles using the CSWF and the
CSWF + T wave functions.

Figure 2. The spin-parallel (g↑↑(r)), spin-antiparallel (g↑↓(r)) and total (g(r)) radial distribution
functions for bcc solid 3He at density ρ = 0.025 091 Å−3 obtained using the CSWF with the two
different spin–spin pseudopotentials (solid and dashed lines) shown in figure 1.

The VMC results for the CSWF + T wave function constitute a sizable improvement upon
the ShSB wave function, although there is still a significant discrepancy with the experimental
results for bcc solid 3He taken from Pandorf and Edwards [18].

Previous diffusion Monte Carlo (DMC) calculations for bcc solid 3He carried out using
an unsymmetrized JN wave function [19] and fixed-node DMC calculations [17] for liquid
3He have given an energy per particle well above the experimental values. Such discrepancies
are too large to be attributed to imperfections in the potential. In the context of solid 3He
studies, these results seem to suggest that the bcc solid 3He phase is correctly stabilized only
by an antisymmetrized ground-state wave function that may be not very different from the
CSWF + T wave function that we are using.

In the case of liquid 3He studies it has been suggested that the discrepancies between
fixed-node DMC simulations, fixed-node GFMC simulations [20] and experiment arise from
the nodal surface of the trial JSB wave function not being accurate enough. However, in recent
work by Casulleras and Boronat [21] it is shown that the fixed-node method combined with
the released-node technique and a systematic method for analytically improving the nodal
surface constitutes a very efficient strategy for improving the calculation of the energy and
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Figure 3. The equation of state of liquid and solid 3He. The density is expressed in Å−3 while the
energy per particle is expressed in K. The experimental energy per particle for liquid 3He is taken
from Aziz and Pathria [24]. The energies per particle for liquid 3He with a Jastrow–Slater (JS), a
Jastrow–Slater-backflow (JSB) and a coherent-state wave function (CSWF liquid) are the results
of a VMC simulation with N = 14 particles, as reported by Lawson et al [10]. The experimental
energy per particle for bcc solid 3He is taken from Pandorf and Edwards [18]. The open and filled
triangles represent the VMC results of this work for bcc solid 3He obtained using respectively the
CSWF and the CSWF with triplet correlations (CSWF + T). Filled circles represent the results
of Pederiva et al [16] obtained using the Shadow–Slater-backflow (ShSB) wave function which
contains the triplet correlations implicitly because of its structure. All results for bcc solid 3He
refer to simulations with N = 54 particles.

related quantities up to a desired accuracy. The combination of the above methods into a DMC
calculation for liquid 3He allowed them to perform a very accurate microscopic calculation of
the equation of state for liquid 3He, including obtaining a prediction for the negative-pressure
region and the spinodal density. The fact that this general approach has successfully dealt
with liquid 3He suggests that it could also be useful for other Fermi systems including solid
3He. As far as the fixed-node framework is concerned, the choice of an accurate trial wave
function used for importance sampling constitutes the most crucial step. VMC calculations
for liquid and solid 4He with shadow-type wave functions [22] strongly indicate the relevance
of many-body correlations for improving the trial wave function. The relevance of four- and
five-body correlations has been recently investigated for small clusters [23]. At this point we
speculate that a CSWF + T wave function that incorporates triplet correlations may constitute a
very good trial wave function for use in importance sampling in a fixed-node DMC simulation
for solid 3He.

Acknowledgments

The authors thank Siu A Chin for useful discussions. This research was funded, in part, by the
US National Science Foundation grants PHY-9512428, PHY-9870054 and DMR-9509743.



1050 O Ciftja et al

References

[1] Aziz R A, Nain V P S, Carley J S, Taylor W L and McConville G T 1979 J. Chem. Phys. 70 4330
[2] Kalos M H, Lee M A, Withlock P A and Chester G V 1981 Phys. Rev. B 24 115
[3] Withlock P A, Kalos M H, Chester G V and Ceperley D M 1980 Phys. Rev. B 21 999
[4] Aziz R A, Janzen A R and Moldover M R 1995 Phys. Rev. Lett. 74 1586
[5] Lee M A, Schmidt K E, Kalos M H and Chester G V 1981 Phys. Rev. Lett. 46 728
[6] Hansen J-P and Levesque D 1968 Phys. Rev. 165 293
[7] Ceperley D M, Chester G V and Kalos M H 1977 Phys. Rev. B 16 3081
[8] Nosanow L H 1964 Phys. Rev. Lett. 13 270
[9] Osheroff D D 1992 J. Low Temp. Phys. 87 297

[10] Lawson J W, Vitiello S A, Schmidt K E and Fantoni S 1997 Phys. Rev. Lett. 78 1846
[11] McMillan W L 1965 Phys. Rev. 138 A442
[12] Vitiello S A, Schmidt K E and Fantoni S 1997 Phys. Rev. B 55 5647
[13] Schmidt K E, Kalos M H, Lee M A and Chester G V 1980 Phys. Rev. Lett. 45 573
[14] Schmidt K E and Ceperley D 1992 The Monte Carlo Method in Condensed Matter Physics ed K Binder (Berlin:

Springer)
[15] Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A M and Teller E 1953 J. Chem. Phys. 21 1087
[16] Pederiva F, Vitiello S A, Gernoth K, Fantoni S and Reatto L 1996 Phys. Rev. B 53 15 129
[17] Moroni S, Fantoni S and Senatore G 1995 Phys. Rev. B 52 13 547
[18] Pandorf R C and Edwards D O 1968 Phys. Rev. 169 22
[19] Pederiva F and Chester G V 1998 J. Low Temp. Phys. 113 741
[20] Panoff R M and Carlson J 1989 Phys. Rev. Lett. 62 1130
[21] Casulleras J and Boronat J 2000 Phys. Rev. Lett. 84 3121
[22] McFarland T, Vitiello S A, Reatto L, Chester G V and Kalos M H 1994 Phys. Rev. B 50 13 577
[23] Mushinski A and Nightingale M P 1994 J. Chem. Phys. 101 8831
[24] Aziz R A and Pathria R K 1972 Phys. Rev. A 7 809


